
                     

JOURNAL OF COMPUTATIONAL PHYSICS146,58–81 (1998)
ARTICLE NO. CP985955

A Flux-Split Algorithm Applied
to Relativistic Flows

R. Donat,∗ J. A. Font,†,‡ J. Ma Ibáñez,‡ and A. Marquina∗
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The equations of RFD can be written as a hyperbolic system of conservation laws
by choosing an appropriate vector of unknowns. We give an explicit formulation of
the full spectral decomposition of the Jacobian matrices associated with the fluxes in
each spatial direction, which is the essential ingredient of the techniques we propose
in this paper. These techniques are based on the recently derived flux formula of
Marquina, a new way to compute the numerical flux at a cell interface which leads
to a conservative, upwind numerical scheme. Using the spectral decompositions in
a fundamental way, we construct high order versions of the basic first-order scheme
described by R. Donat and A. Marquina in (J. Comput. Phys. 125, 42 (1996)) and test
their performance in several standard simulations in one dimension. Two-dimensional
simulations include a wind tunnel with a flat faced step and a supersonic jet stream,
both of them in strongly ultrarelativistic regimes.c© 1998 Academic Press

Key Words:non-linear systems of conservation laws; shock capturing; special
relativistic hydrodynamics.

1. INTRODUCTION

The term relativistic fluid dynamics applies to both those flows in which the velocities (of
individual particles or of the fluid as a whole) approachc, the velocity of light in vacuum,
or those where the effects of the background gravitational field—or that generated by the
matter itself—are so important that a description in terms of Einstein theory of gravity
becomes necessary.

In recent years, relativistic fluid dynamics (RFD henceforth) has come to play an im-
portant role in science. In nuclear physics, heavy-ion collision experiments taking place
nowadays in large particle accelerators produce beams with velocities equal to a large frac-
tion of c. Nuclear collisions are described in the language of relativistic hydrodynamics as a
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solution of an initial value problem. After the nuclei collide, compression shock waves form
in the nuclear matter. The aim of these experiments is to gain insight into the equation of
state of hot dense matter (see, e.g., the review in [29] or Strottman’s talk in [30]). Currently,
energies of more than 100 GeV/nucleon are obtained (i.e., Lorentz factors larger than 100)
and the TeV regime is planned in future experiments.

Almost any high energy astrophysical phenomenon requires a relativistic treatment. Sce-
narios involving compact objects as supernovae, active galactic nuclei, and coalescing com-
pact binaries include flows at relativistic speeds and the presence of strong shock waves.
In particular, flow velocities as large as 99% ofc are required to explain the apparent su-
perluminal motion observed in many of the commonly observed jets in extragalactic radio
sources associated to active galactic nuclei (two superluminal sources have been recently
identified in our Galaxy [28]). The observational evidences in these systems confirm that
Lorentz factors greater than 10 are plausible (see, e.g., [22] and references therein).

The evolution of a relativistic fluid is described by a system of equations which are the
expression oflocal conservation laws: the local conservation of baryon number density,
and the local conservation of energy-momentum

∇µ(ρUµ) = 0, ∇µTµν = 0 (1)

(throughout the paper, Greek indices run from 0 to 3, Latin indices from 1 to 3, and units in
which the speed of light is equal to one are used). Here,ρ is the rest-mass density,Uµ the
4-velocity vector and∇µ stands for the covariant derivative. The energy-momentum tensor,
Tµν , describes the physical properties of matter. For example, for a perfect fluid

Tµν = ρhUµU ν + pgµν, (2)

wherep is the pressure andh is the specific enthalpy, defined as

h = 1 + ε + p/ρ, (3)

with ε being the specific internal energy. The tensorgµν defines the metric of the space-time
M where the fluid evolves.

The RFD equations are hyperbolic, just as their Newtonian counterparts, which is the
mathematical manifestation of the fact that information takes time to spread in space-
time. An immediate consequence of a finite speed of propagation is the possibility of
discontinuities in the solution of the system of partial differential equations.

Simulations based on the numerical integration of the hydrodynamical equations provide
a valuable tool to confront the theoretical models with the observations (as in astrophysics)
or the experimental results (as in nuclear physics), which explains the rapid progress, during
the last few years towards the development of reliable RFD-codes that work accurately under
the extreme conditions of interest.

The first Eulerian code in RFD was developed by Wilson [32], on the basis of explicit
finite-differencing techniques and monotonic transport. The code incorporated artificial vis-
cosity techniques based on earlier work of Richtmyer and Morton [25] for the nonrelativistic
flow equations. Wilson’s code and its sequels have been widely used in cosmology, axisym-
metric relativistic stellar collapse, accretion onto compact objects, collisions of heavy ions
and, more recently, in studies of coalescing compact binaries. However, despite its popu-
larity (almost all codes in numerical relativistic hydrodynamics in the eighties were based
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in Wilson’s procedure—see, e.g., Refs. in [3]) it turned out to be unable to resolve the
extremely strong shock structures that appear in the ultrarelativistic regime.

Norman and Winkler analyzed in depth the artificial viscosity approach to RFD in [23].
Their research led them to the conclusion that a fully implicit treatment of the relativistic
equations was the only way to increase the accuracy of artificial viscosity formulations in
the ultrarelativistic regime.

By the mid-eighties and fueled by an increasing awareness that the artificial viscosity
approach was of limited use in the ultrarelativistic regime, part of the numerical RFD
community started to look into other shock capturing techniques that had been successfully
applied in gas dynamics to obtain accurate numerical approximations in the presence of
strong shocks.

Over the last few decades, many shock-capturing methods have arisen in classical gas
dynamics simulations. Nowadays, state-of-the-art numerical simulations employ high reso-
lution shock capturing (HRSC henceforth) methods. HRSC techniques produce highly
accurate numerical approximations (formally second order or better) in smooth regions of
the flow and capture the motion of unresolved steep gradients, without creating spurious
oscillations. Typically, these techniques require a deeper knowledge of the physics of the
system than the artificial viscosity approach, but the resulting numerical codes are more
robust and less dependent on ad-hoc parameters.

Although most HRSC methods were developed with the Euler equations of gas dynam-
ics in mind, they have now been carefully formulated within a systematic mathematical
framework that makes them general purpose numerical methods for hyperbolic systems of
conservation laws. This explains why the development of modern shock capturing codes in
numerical RFD has followed the trail of Newtonian hydro-codes.

The first explicit shock capturing codes in RFD without artificial viscosity appear in
the early nineties [17, 15, 8]. These codes follow the so-called “Godunov approach,” and
their design is based on two main points: (1) The ability to write the RFD equations as
a system of hyperbolic conservation laws, identifying a suitable vector of unknowns. (2)
An approximate Riemann solverbuilt using the spectral decomposition of the Jacobian
matrices of the system.

Nowadays, many of the most successful shock-capturing codes in gas dynamics have a
relativistic extension. For example, and with no intent of being exhaustive, Eulderink [8]
has explicitly derived a relativistic Roe Riemann solver, Schneideret al.[26] carried out the
extension of Einfeldt’s HLLE method, Mart´ı and Müller [19] extended the PPM method of
Woodward and Colella, Wenet al. [31] extended Glimm’s method, Dolezal and Wong [6]
have put into practice Shu-Osher ENO techniques, and Balsara [2] has extended Colella’s
two-shock approximation. With the help of these extensions, the realm of simulations of
special-relativistic flows has begun to be explored within the last few years [5, 6, 9, 11, 12,
20–22, 19, 26].

From the results of many test calculations shown in the previous references, it is appar-
ent that an accurate description of ultrarelativistic flows with strong shock waves can be
accomplished by writing the RFD equations in conservation form and using the wealth of
shock capturing techniques devised for Newtonian hydrodynamics.

HRSC methods are now routinely used in classical gas dynamics to discretize the con-
vective derivatives of a general system of convection–diffusion–reaction equations in any
number of spatial dimensions. It is well known, although not particularly well understood,
that many of these shock-capturing techniques can, on occasions, fail quite spectacularly.
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An excellent review on the numerical pathologies that can be encountered in gas dynamics
simulations is given by Quirk [24]. Usually, the pathological behavior is local and does
not cause the code to crash. However, in complicated situations, the pathological behavior
that a particular scheme may display can have a disastrous effect on the numerical ap-
proximation: one example treating an interface separating a liquid drop—incompressible
Navier–Stokes fluid—and a high speed gas—chemically reactive Navier–Stokes fluid—is
described in [10].

As in Newtonian hydrodynamics, HRSC methods are starting to become part of numerical
codes designed to model more complicated situations in RFD. In the references given above,
many of the local pathologies observed in Newtonian hydrodynamics can also be observed in
relativistic tests. It becomes, thus, important to be aware of the occurrence of any numerical
pathologies in a given scheme.

In a recent paper [4], Donat and Marquina propose a numerical scheme for hyperbolic
systems of conservation laws that produces numerical approximations less sensitive to the
local pathologies mentioned in [24]. In the case described in [10], the use of Marquina’s
flux formula also results in a physically well-behaved numerical solution which appears
free of (unwanted) oscillations.

In this paper, we provide the technical ingredients needed to implement Marquina’s
scheme for relativistic flows. In our numerical simulations in RFD, a sample of which
shall be displayed in later sections, we observe that the behavior of the scheme is largely
the same as in the classical gas dynamics case: Many of the (local) numerical pathologies
encountered in some of the aforementioned references are considerably reduced or even
eliminated.

The paper is organized as follows: In Section 2, we give an explicit ready-to-work de-
scription of the spectral decomposition of the multidimensional RFD system in conservation
form. In Section 3 we describe briefly Marquina’s technique. In order to demonstrate the
capabilities of Marquina’s scheme in the simulation of relativistic flows, in Section 4 we an-
alyze a significant sample of the standard one-dimensional tests for which the exact solution
is known. All tests in this section have also been carried out by other authors, using other
algorithms, and our results can be directly compared with theirs. In two dimensions we
carry out a relativistic extension of Emery’s step test, a benchmark for numerical schemes
in classical hydrodynamics and an astrophysical application, the evolution of a relativistic
jet moving at a supersonic speed. Finally, we draw some conclusions in Section 6.

2. HRSC METHODS IN RFD

In recent years, and trailing the evolution of computational methods for classical fluid
dynamics, several new methods for numerical RFD have been designed which exploit the
hyperbolic and conservative character of the relativistic equations.

The first step toward the adaptation of HRSC techniques to RFD consists in rewriting the
system of Eqs. (1) in conservation (ordivergence) form:

∂tu + ∇ · f(u) = 0. (4)

This basic step serves to identify the set of unknowns, the vector ofconserved quantities
u, and their corresponding fluxesf(u). Once the equations have been written in conser-
vation form, almost every high resolution method devised to solve hyperbolic systems of
conservation laws can be extended to RFD.
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To focus our discussion, we shall restrict our attention to special relativistic hydrody-
namics. In this case and for a perfect gas, system (1) can be rewritten as (see [12])

∂Fµ(w)

∂xµ
= 0, (5)

with

w = (ρ, vi , ε)T (6)

F0(w) = (ρW, ρhW2v j , ρhW2 − p − ρW)T (7)

Fi (w) = (ρWvi , ρhW2v j vi + pδi j , ρhW2vi − ρWvi )T . (8)

Herexµ = (t, x, y, z) andvi =Ui/W with ρ, h, ε, p, andUi are as defined in Section 1,
andW, the Lorentz factor(W ≡ U0), satisfiesW = (1 − v2)−1/2, with v2 = δi j v

i v j .
We consider the variables

D = ρW

Sj = ρhW2v j (9)

τ = ρhW2 − p − ρW,

which are, respectively, the rest-mass, momentum, and total energy densities, measured in
the laboratory frame. Then, defining the vector of conserved quantities as

u = (D, Sj , τ ), (10)

system (5) takes the requiredconservative form:

∂u
∂t

+
∑

i

∂f i (u)

∂xi
= 0. (11)

Written in this form, the hyperbolic character of the RFD system is explicitly displayed in
a form that is suitable for the application of the HRSC machinery developed in classical
gas dynamics.

The system of partial differential equations is closed, as usual, with an equation of state
p= p(ρ, ε). Anile [1] has shown that system (10)–(11) is hyperbolic for causal equations
of state, i.e., those satisfyingcs < 1, wherecs, defined as

hc2
s = ∂p

∂ρ
+ (p/ρ2)

∂p

∂ε
, (12)

is the local sound velocity.
When applying a shock capturing technique to a conservative formulation of system (1),

the code evolves the conserved quantities in time. The local rest-frame variables{ρ, ε, p}and
the three-velocityv j have to be computed at least once per time step in each computational
cell. This computation requires a nonlinear root-finding routine [19].

Modern HRSC schemes use the characteristic structure of the hyperbolic system of
conservation laws. In many Godunov-type schemes, the characteristic structure is used to
compute either an exact or an approximate solution to a sequence of Riemann problems
at each cell interface. In characteristic based methods (see [10] or [27]), the characteristic
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structure is used to compute the local characteristic fields, which, in the case of a system,
are the quantities that are properly thought of as propagating in various directions.

In each of these two approaches, the characteristic decomposition of the Jacobian matrices
of the nonlinear system of conservation laws is important, not only because it is one of the
key ingredients in the design of the numerical flux at the interfaces, but because experience
has shown that it facilitates a robust upgrading of the order of a numerical scheme.

Following a procedure similar to the one described in [12], we have derived analyti-
cal expressions for the spectral decomposition of the three 5× 5 Jacobian matricesBi (u)

associated with the fluxesf i (u) of system (10)–(11),

Bi (u) = ∂f i (u)

∂u
. (13)

The eigenvalues of matrixBx(u) are (thei = y, zcases are easily obtained by symmetry):

λ± = 1

1 − v2c2
s

{
vx

(
1 − c2

s

) ± cs

√
(1 − v2)

[
1 − vxvx − (v2 − vxvx)c2

S

]}
, (14)

λ0 = vx (triple). (15)

To give the expression of the right and left eigenvectors, we define the auxiliary quantities

K ≡ κ̃

κ̃ − c2
s

, A± ≡ 1 − vxvx

1 − vxλ±
(16)

with

κ̃ = 1

ρ

∂p

∂ε

computed from the equation of state.
A complete set ofright-eigenvectorsis

r0,1 =
( K

hW
, vx, vy, vz, 1 − K

hW

)
(17)

r0,2 = (Wvy, 2hW2vxvy, h(1 + 2W2vyvy), 2hW2vyvz, 2hW2vy − Wvy) (18)

r0,3 = (Wvz, 2hW2vxvz, 2hW2vyvz, h(1 + 2W2vzvz), 2hW2vz − Wvz) (19)

r± = (1, hWA±λ±, hWvy, hWvz, hWA± − 1). (20)

The corresponding complete set ofleft-eigenvectorsis

l0,1 = W

K − 1
(h − W, Wvx, Wvy, Wvz, −W)

l0,2 = 1

h(1 − vxvx)
(−vy, vxvy, 1 − vxvx, 0, −vy)

l0,3 = 1

h(1 − vxvx)
(−vz, vxvz, 0, 1− vxvx, −vz)
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l∓ = (±1)
h2

1



hWA±(vx − λ±) − vx − W2(v2 − vxvx)(2K− 1)(vx −A±λ±) +KA±λ±

1 + W2(v2 − vxvx)(2K − 1)(1 −A±) −KA±

W2vy(2K − 1)A±(vx − λ±)

W2vz(2K − 1)A±(vx − λ±)

−vx − W2(v2 − vxvx)(2K − 1)(vx −A±λ±) +KA±λ±


,

where1 is the determinant of the matrix of right-eigenvectors:

1 = h3W(K − 1)(1 − vxvx)(A+λ+ −A−λ−). (21)

For an ideal gas equation of state,K= h; thus,K> 1 and1 is different from zero(|vx| < 1).
In a previous work [12], the algebraic study of the characteristic fields was restricted to

find the eigenvalues and right-eigenvectors of the Jacobian matrices of system (5). Hence, a
multiplication of the right-eigenvectors matrix by the Jacobian matrix associated to the flux
in the temporal direction of system (5) was necessary. Besides that incomplete analysis, the
code in [12] also included a time-consuming matrix-inversion routine for the computation
of the left-eigenvectors. The procedure, albeit rudimentary, allowed the construction of a
two-dimensional code that was able to successfully simulate mildly relativistic flows in two
dimensions.

We would like to point out that, to the best of our knowledge, this is the first time that a full,
ready-to-implement description of the characteristic structure of system (11) in multidimen-
sions is explicitly given. This spectral decomposition provides the user with the technical
ingredients needed to develop state-of-the-art, upwind-biased HRSC codes for numerical
relativistic hydrodynamics in a way which is identical to the classical case. Let us note,
however, that the characteristic wave speeds in the relativistic case not only depend on the
fluid velocity components in the wave propagation direction, but also on the normal velocity
components. This coupling adds new numerical difficulties which are specific to RFD.

3. MARQUINA’S SCHEME

In [4] Donat and Marquina propose a new flux formula to compute the numerical flux at
a cell interface.

In the scalar case Marquina’s flux formula is precisely an entropy satisfying numerical
flux formula used by Shu and Osher in the design of their ENO schemes [27]. The novelty
of the approach described in [4] lies in the extension of Shu–Osher’s numerical flux to
systems of hyperbolic conservation laws. In Marquina’s scheme there are no Riemann
solutions involved (either exact or approximate) and there are no artificial intermediate
states constructed at each cell interface.

Given the spectral decompositions described in Section 2, the implementation of
Marquina’s scheme in RFD is straightforward; we simply follow the recipe described in [4]
to obtain the first-order scheme. For the sake of completeness, we shall include the basic
description of the first-order scheme in the one-dimensional case.

To compute the numerical flux at a given interface, separating the statesul andur , we
compute first thesidedlocal characteristic variables and fluxes:

ω
p
l = l p(ul) · ul, φ

p
l = l p(ul) · f(ul),

ωp
r = l p(ur ) · ur , φ p

r = l p(ur ) · f(ur ).
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Here l p(ul), l p(ur ) for p= 1, 2 . . . , m are the (normalized) left eigenvectors of the
Jacobian matricesB(ul),B(ur ). Letλp(ul), λp(ur ), p= 1, 2 . . . , m, be their corresponding
eigenvalues. We proceed as follows:

Fork = 1, . . . , m
If λk(u) does not change sign in [ul, ur ], then

If λk(ul) > 0 then
φk

+ = φk
l

φk
− = 0

else
φk

+ = 0

φk
− = φk

r

endif
else

αk = max
u∈0(ul ,ur )

|λk(u)|
φk

+ = .5 · (
φk

l + αkω
k
l

)
φk

− = .5 · (
φk

r − αkω
k
r

)
endif

0(ul, ur ) is a curve in the space of states of the system connectingul andur . For any
hyperbolic system where the fields are either genuinely nonlinear or linearly degenerate,
we can test the possible sign changes ofλk(u) by checking the sign ofλk(ul) ·λk(ur ). Also,
αk can be determined as

αk = max{|λk(ul)|, |λk(ur )|}.
The numerical flux that corresponds to the cell-interface separating the statesul andur

is then

FM(ul, ur ) =
m∑

p=1

(
φ

p
+r p(ul) + φ

p
−r p(ur )

)
. (22)

Marquina’s scheme can thus be interpreted as a characteristic-based scheme that avoids
the use of anaveragedintermediate state to perform the transformation to the local char-
acteristic fields. The common approach in all characteristic-based methods is to evaluate
this transformation at some reasonable average of the states adjacent to each cell interface.
There is clearly a great deal of ambiguity in choosing this average (as opposed to what
happens in the approximate Riemann solver context) and any particular choice seems to
introduce subtle spurious features into the solution. In Marquina’s scheme the ambiguity is
avoided by using directly the unambiguous data on the left and right sides of each cell wall.

The extension to higher dimensions is accomplished, as in [27], in a dimension by dimen-
sion fashion, so that the one-dimensional method applies unchanged to higher dimensional
problems.

To construct higher order versions of the scheme, we follow themethod of linesapproach
(see, e.g., [14]). We consider the discretization process in two stages, discretizing first only
in space, leaving the problem continuous in time. This step leads to a system of ordinary
differential equations in time, called the “semi-discrete equations.” We then discretize in
time using any standard numerical ODE solver.

This simple procedure decouples the time and space discretizations. High order accuracy
in space can be achieved by applying a high order interpolation procedure in space, while
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high order accuracy in time is obtained by applying an adequate high order ODE solver. This
approach is also particularly useful in extending methods to two or more space dimensions.

In this paper we choose to follow the simplified ENO framework of Shu and Osher [27]
to improve the order of the method. Shu–Osher numerical schemes have been already used
in RFD. In [15] a numerical scheme of this type was used to simulate ultrarelativistic one-
dimensional flows. Later on, Dolezal and Wong [6] have also applied the techniques in [27]
to collisions of heavy ions.

In this framework the spatial order of accuracy is improved by performing an upwind
biased ENO type reconstruction on the characteristic fluxes. The time evolution step is
carried out by a family of Runge–Kutta methods which are also total variation diminishing
(see [27] for details).

In the context of Marquina’s scheme, we perform the reconstruction procedure on the
characteristic fluxesφ p

l , φ p
r , which are constructed using the spectral information of the

Jacobian matricesB(ul) andB(ur ). The statesul andur on both sides of a cell boundary
are computed using the same type of reconstruction procedure as for the characteristic
fluxes.

Higher order versions of Marquina’s scheme lead to full HRSC schemes, i.e., schemes
with sharp resolution at discontinuities, no spurious oscillatory behavior, and at least second-
order accuracy in smooth regions of the flow.

Technical remarks. In this paper we shall consider second- and third-order extensions of
Marquina’s scheme. In our numerical experimentation (both in the classical and relativistic
frameworks) we have observed that the piecewise-hyperbolic reconstruction (PHM [16])
is slightly more robust in many situations (probably because it is more local than the ENO
parabolic reconstruction) and it is therefore our preferred third-order reconstruction.

An extensive comparison between the third-order reconstructions available in the liter-
ature is presently under way; however, in general terms we can say that the second-order
reconstructions are more robust under extreme circumstances than the third-order ones
(PHM and ENO3). We shall be more specific in each example within the next section.

In carrying out Marquina’s scheme, we have to computeB(ul) andB(ur ) at each cell
interface. In the first-order method, at the boundary between thej th and the( j +1)th cell we
haveul = u j andur = u j +1; thus we only need to carry out one Jacobian evaluation per cell-
interface, which is exactly the same computational effort required in a numerical scheme
based on a Roe-like approximate Riemann solver. However, in a high order extension we
have to compute the left and right statesul ,ur using an appropriate reconstruction procedure.
This leads totwo Jacobian evaluations per cell-interface, instead of one, and, thus, to an
increase in the computational cost of the method.

In the original formulation (see [4]), the reconstruction step is performed on the conserved
variables, but doing this in RFD increases the computational cost, since it becomes necessary
to return to the rest-frame quantities in order to complete the computation of the spectral
decompositions. To minimize the computational cost in our codes, the reconstruction step
in the upgrading process is done directly onρ, vi , andε; then p andh are computed from
the equation of state and (3), respectively.

4. ONE-DIMENSIONAL NUMERICAL EXPERIMENTS

Riemann problems involving flow in a constant section pipe have become standard test
problems in numerical hydrodynamics. The flow evolution involves shock and rarefaction
waves, as well as contact discontinuities, and can be computed analytically in a way which is
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similar to the classical case [18]. The comparison of the numerical approximations obtained
by a given algorithm and the true solution provides thus a good measurement of its efficiency
and accuracy.

In this section we apply our codes to several one-dimensional flows of the above type mov-
ing at relativistic velocities. All of them have been considered by other authors [19, 23, 26]
and their results can be compared with ours.

4.1. Relativistic Blast Wave Tests

The original setup of these test problems is as follows: At timet = 0 two regions of
an ideal gas at rest with pressurespL and pR and densitiesρL andρR are separated by a
diaphragm which is suddenly removed. As in the nonrelativistic case, four constant states
occur, separated by three elementary waves; details on the exact solution can be found
in [18, 26]. The main differences between the solution of relativistic shock tubes and
their Newtonian counterparts are due to the nonlinear velocity addition and the Lorentz
contraction. The first effect yields a curved profile for the rarefaction fan, as opposed to a
linear one in the Newtonian case. The Lorentz contraction narrows the shock plateau. These
effects, especially the second one, become particularly strong in the ultrarelativistic regime.

We have simulated two particular shock tube tests for which the solution consists of a
rarefaction wave traveling to the left and a shock wave moving to the right, with a contact
discontinuity in between. The initial states are as follows:

Case1. {pL = 13.3, ρL = 10, vL = 0}, {pR = 0, ρR = 1, vR = 0};
Case2. {pL = 103, ρL = 1, vL = 0}, {pR = 10−2, ρR = 1, vR = 0}.
In our numerical experiments the computational domain is [0, 1] and, att = 0, the di-

aphragm is placed atx = 0.5. We use an ideal gas law,p= (0 − 1)ρε with 0 = 5/3. In
Case 1 and for numerical reasons, the pressure of the right state has been set to a small finite
value(pR = 0.66× 10−6).

Case1. Figures 1–3 show the normalized profiles of pressure, density, and velocity,
obtained with our first-, second-, and third-order codes (labeled “Plain,” “ENO2,” and
“ENO3,” respectively), at timet = 0.4 on an Eulerian grid of 200 zones. This allows for
a direct comparison with the results in [26]. By this time the exact solution (continuous
line) has a fully developed structure. The leading shock is placed atx = 0.83, the trailing
contact discontinuity atx = 0.78, and the corners of the rarefaction profile are located at
x = 0.21 andx = 0.56. The velocity of the gas behind the shock reaches the value of 0.72
and the relativistic effects are already noticeable. It can be seen that our second- and third-
order extensions display no spurious overshoots or undershoots at rarefaction wave cor-
ners.

The numerical solution obtained with our first-order code shows anO(1x) kink in
the rarefaction wave profile. This pathology, well known in Newtonian first-order codes,
disappears in our higher order numerical approximations. It is observed in these figures
that the obtained profiles are sharper and the overall resolution improves as the order of the
method increases.

Figure 4 shows a third-order approximation on a 400 zones grid. The results show that
the quality of the computed solution is similar to the one obtained by Mart´ı and Müller in
[19] with a relativistic extension of the PPM method which employs theexactrelativistic
Riemann solver.
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FIG. 1. The relativistic blast wave problem 1 for timet = 0.4. Normalized profiles of density, pressure and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a first-order
scheme (plain) on an equidistant grid of 200 zones.

Table 1 displays the mean errors for the three methods. The largest errors occur in the
postshock area. In a smooth region, such as the curved profile of the rarefaction wave, the
errors are much smaller. For example, for the 200 zones runs, there is only a 7.09%, 3.12%,
2.37% error in the first-, second-, and third-order approximations to the density, respectively.
In the 400 zones run, the error in the third-order approximation is reduced to 1.18%.

We should also mention that, in this particular problem, the third-order PHM reconstruc-
tion (which uses hyperbolae as reconstructing functions) leads to negative internal energies,

FIG. 2. The relativistic blast wave problem 1 for timet = 0.4. Normalized profiles of density, pressure and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a second-
order scheme (ENO2) on an equidistant grid of 200 zones.
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FIG. 3. The relativistic blast wave problem 1 for timet = 0.4. Normalized profiles of density, pressure, and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a third-order
scheme (ENO3) on an equidistant grid of 200 zones.

which causes the code to crash. This trend appears whenever there are large jumps into cold
regions(p→ 0). A common practice in this situation, which we shall not follow in this
paper, is to substitute these negative values (which are in fact very small) by positive ones.
This simple procedure leads, however, to a loss of conservation.

Case2. This test was first considered by Norman and Winkler [23]. The flow pattern is
similar to that of Case 1 but the relativistic effects make it much more severe.

FIG. 4. The relativistic blast wave problem 1 for timet = 0.4. Normalized profiles of density, pressure and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a third-order
scheme (ENO3) on an equidistant grid of 400 zones.
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TABLE 1

L-1 Norm Errors of Density, Velocity, and Pressure for the Relativistic

Blast Wave Problems

Case Scheme 1x ‖E(ρ)‖1 ‖E(v)‖1 ‖E(p)‖1

1 Plain 1
200

2.83E − 01 3.16E − 02 2.52E − 01
ENO2 1.35E − 01 1.54E − 02 1.06E − 01
ENO3 9.70E − 02 1.15E − 02 7.77E − 02
ENO3 1

400
5.35E − 02 6.26E − 03 4.24E − 02

2 Plain 1
400

1.86E − 01 5.75E − 02 1.34E + 01
ENO2 1.54E − 01 2.64E − 02 4.91E − 00
PHM 1.12E − 01 1.68E − 02 3.09E − 00

Note.The second column displays the reconstruction procedure used.

An initial jump in pressure of five orders of magnitude leads to the formation of a thin
and dense shell bounded by a leading shock front and a trailing contact discontinuity. The
postshock velocity is 0.96(W ≈ 3.5), while the shock speed is 0.986(W ≈ 6).

The thin shock plateau is a hard test for any numerical scheme. Norman and Winkler
[23], with an implicit hydrodynamical code that incorporated artificial-viscosity terms, had
to use an adaptive grid to obtain consistent profiles. Conservative methods do a good job
with a fixed Eulerian grid. Mart´ı and Müller, with their relativistic PPM, obtain in [19]
results comparable to those of [23] with a fixed Eulerian grid and an explicit numerical
code.

Figures 5–7 show our numerical results. We use an Eulerian grid of 400 zones to allow
for a direct comparison with [19]. As in Case 1, our third-order method gives the same
overall resolution as their relativistic PPM with the exact Riemann solver.

FIG. 5. The relativistic blast wave problem 2 for timet = 0.35. Normalized profiles of density, pressure and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a first
order scheme (plain) on an equidistant grid of 400 zones.



        

ALGORITHM FOR RELATIVISTIC FLOWS 71

FIG. 6. The relativistic blast wave problem 2 for timet = 0.35. Normalized profiles of density, pressure and
velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a second
order scheme (ENO2) on an equidistant grid of 400 zones.

Table 1 displays the mean errors for the three methods. As in Case 1 (and also as in [19]),
the largest errors occur in the postshock area. In a smooth region, such as the curved profile
of the rarefaction wave, there is only a 0.52%, 0.19%, 0.11% error in the first-, second-, and
third-order approximations to the density, respectively.

It is worth mentioning that the ENO third-order reconstruction leads, in this problem, to
velocities greater than one, the speed of light, causing the code to crash. On the other hand
and because the jump in pressure does not involve acoldgas, the PHM reconstruction leads
to a well-behaved numerical approximation which isformally third-order accurate.

FIG. 7. The relativistic blast wave problem 2 for timet = 0.35. Normalized profiles of density, pressure
and velocity vs distance for the computed and exact (solid line) solution. All variables were calculated with a
third-order scheme (PHM) on an equidistant grid of 400 zones.
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4.2. Relativistic Shock Reflection Test

An ideal cold gas(ε1 = 0) with velocity v1 hits a wall. The gas is thus compressed and
heated, giving rise to a shock which starts to propagate off the wall, leaving the gas behind
at rest(v2 = 0). Subscripts 1 and 2 stand for the states of gas ahead and behind, respectively,
of the shock.

The postshock density is an increasing function of the initial inflow velocity according
to the compression ratioσ (≡ρ2/ρ1),

σ = 0 + 1

0 − 1
+ 0

0 − 1
ε2, (23)

whereε2 = W1−1 and0 is the adiabatic index of the equation of sate. As is well known, in the
Newtonian limit this compression ratio is independent of the initial velocity. On the contrary,
in the ultrarelativistic regime the density of the gas behind the shock is unbounded(σ ∼ W1).

In our numerical setup the computational domain covers the interval [0, 1] and the wall
is placed atx = 1. We use an Eulerian grid of 100 zones and an ideal gas with0 = 5/3. For
numerical reasons, the specific internal energy of the inflow gas was set to a small initial
value(ε1 = 10−5W1).

Figure 8 shows the normalized profiles of the pressure, density, and velocity obtained with
our ENO2 code at a time when the shock has propagated 0.5 units off the wall. The profiles
shown correspond to an initial velocityv1 = 0.99999(W ≈ 224). As in the previous tests,
the shock resolution is poorer in the numerical profiles, corresponding to the first-order
method (not shown). The inflow velocity imposes no particular theoretical or numerical
constraints on the scheme, which means that the ultrarelativistic regime poses no special
difficulties in the simulations. Different runs varying the inflow velocity (not shown) gave
qualitatively similar profiles.

There are, however, several technical remarks that need to be pointed out:
Because the numerical simulation involves a cold gas, the PHM reconstruction may cause

a code-crash in the case of extremely large pressure jumps when negative values of the

FIG. 8. The relativistic shock reflection problem for a time when the shock has propagated 0.5 units off the wall:
normalized profiles of density, pressure, and velocity vs distance for the computed and exact (solid line) solution.
All variables were calculated with a second-order (ENO2) approximation on an equidistant grid of 100 zones.
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FIG. 9. Relativistic shock reflection test: unnormalized density profile 50 zones next to the right wall on a
250-zone grid. Left: Shu–Osher scheme. Right: Marquina’s scheme. x, PHM; o, ENO2.

internal energy may be obtained. The problem usually disappears when we increase the
spatial resolution (which in turn, increases the resolution power of the numerical recon-
struction procedure). In this problem, we obtain a well-behaved numerical approximation
with a PHM-third-order code and 250 zones in the computational domain (see Fig. 9).

In treating extremely large velocities(v ≈ 1) we will eventually hit the numerical preci-
sion barrier, when the velocity becomes numerically indistinguishable from unity, or even
(because of the essentially non-oscillatory character of the reconstruction procedures con-
sidered in this paper) the reconstructed velocities may become slightly larger than one,
causing the code to crash. A remedy for this extreme situation consists of carrying out the
reconstruction procedure on the spatial components of the 4-velocityU j = v j W; defining
U2 = δi j U i U j we then haveW = (1+U2)1/2. This can be included in the original formula-
tion of the conservative form of the scheme [8] or incorporated into the existing formulation
[6]. The numerical test in Figs. 8 and 9 have been done including the second option in the
basic scheme.

At the shock location, the numerical procedure described in [19] to recover the values of
the rest-frame quantities from the conserved variables becomes quite inefficient for large
values of the inflow velocity. This is due to the extremely large pressure jumps and the poor
choice of the initial pressure in the root-finding routine. Typically, the maximum number of
Newton–Raphson iterations is 3–4, and this is the case, in this problem, for inflow velocities
up to 1−10−9 (i.e.,W1 > 2× 104; in any case, well above the range needed in applications),
this value increases up to 30–40 forv1 = 1− 10−10 and up to 300–400 forv1 = 1− 10−11.
However, the deficiency can be easily overcome by taking an appropriate average of various
neighboring pressure values as the initial guess for the Newton–Raphson iteration.

Conventional schemes applied to shock reflection tests often give numerical approxima-
tions with a consistentO(1) error in the density and internal energy in a few cells near the
reflecting wall. This “overheating,” as it is known in classical hydrodynamics (see, e.g., [4]
and references therein), is purely a numerical artifact which is considerably reduced when
Marquina’s scheme is used. This was the case in classical gas dynamics simulations (see
[4]) and it also seems to apply to RFD simulations. For the sake of comparison, the left side
of Fig. 9 displays the numerical values obtained with Shu–Osher’s scheme at the last 50
zones near the wall (atx = 1), with several reconstruction procedures on a 250-zone grid.
The “overheating” phenomenon is clearly visible and it leads to a 17% error at the wall in
the first-order scheme (11% in its PHM version). The right side of the same figure displays
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the numerical values obtained with Marquina’s scheme. In this case the error at the wall
is less than 4% in the first order version of Marquina’s scheme (around 2.5% in its PHM
version). As in the classical gas dynamics case, Marquina’s scheme seems to be able to
reduce the “wall heating error” in shock reflection problems.

5. MULTIDIMENSIONAL NUMERICAL EXPERIMENTS

5.1. Wind Tunnel with a Flat-Faced Step

A challenging test for two-dimensional shock calculations is the numerical simulation
of a wind tunnel with a flat-faced step, originally introduced by Emery [7] to compare
several difference schemes in classical fluid dynamics. We have extended this test to the
relativistic (and ultrarelativistic) flow regime, trying to keep the geometry and most of the
initial conditions as in the original experiment [7].

A Mach 3 flow (Newtonian definition) is injected into a tunnel containing a step. The
tunnel is three units long and one unit wide. The step is 0.2 units high and it is located 0.6
units from the left-hand end of the tunnel. Initially, the wind tunnel is filled with an ideal
gas with0 = 7/5, which everywhere has densityρ(0, x, y) = ρ0 = 1.4, vx(0, x, y) = vx

0,
andvy(0, x, y) = v

y
0 = 0 for all x, y. Gas with these properties is continually fed in from

the left-hand boundary.
An inflow boundary condition is applied at the left end of the computational domain and

outflow boundary conditions are applied at the right end. Along the walls of the tunnel, as
well as on the boundary marked by the step, reflecting boundary conditions are applied. The
corner of the step is the center of a rarefaction fan and, thus, a singular point of the flow. As in
the classical gas dynamics framework [33], numerical errors generated in the neighborhood
of this point can seriously affect the global flow. Our experimentation confirms that, just as
in the Newtonian limit, it is necessary to apply an additional boundary condition near the
corner of the step in order to minimize the generation of numerical errors near this singular
point. Our corner treatment is based on a relativistic extension of the conditions imposed
in [33] for Newtonian gas dynamics. Specific details can be found in the Appendix.

The computational domain is discretized using a rectangular grid of 120x-cells× 40
y-cells. The initial value of thex-component of the three velocity,vx

0, has been used as a
free parameter for different runs. For our ENO2 method, the computational time per cell
and time step on an Apollo 9000 712/100 is 2× 10−3 seconds. For the plain method the
computational time per cell and time step on the same machine is 0.7× 10−3.

The density distribution is the hardest one to compute due, on one hand, to the Mach
stem at the upper wall and, on the other hand, to the corner of the step. Moreover, in the
ultrarelativistic regime where the Lorentz factorW À 1, the large jumps in density and
pressure make the test much more severe. The general evolution is similar to the Newtonian
case (see [33]) but the bow shock moves much faster in the ultrarelativistic regime. In the
computational domain we consider, an overall steady flow never develops and eventually the
bow shock leaves the computational domain. The exit time depends on the inflow velocity.

Figure 10 shows contour plots of the density obtained with our first-, second-, and third-
order codes forvx

0 = 0.995, which corresponds toW ≈ 10. By timet = 4.3 the unsteady flow
has a rich and interesting structure. The location of the bow shock, Mach stem, and reflected
shock are consistent in the three runs. As in the one-dimensional case, increasing the order
of the method leads to sharper profiles, i.e., less numerical viscosity. This is especially
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FIG. 10. The relativistic version of Emery’s flat-faced step for a timet = 4.3. Thirty isocontours of the
logarithm of the density for the different reconstructions used: first-order (top), ENO2 (center), and PHM (bottom).
The corner treatmentdescribed in the Appendix has been applied. All cases correspond to an inflow velocity
vx

0 = 0.995. Computations were performed on a rectangular grid of 120× 40 zones.

noticeable in the secondary reflected shock over the step. Figure 11 shows a section plot of
the density aty = 0.4.

5.2. A 2D Simulation of a Supersonic Jet

As a 2D application we have simulated the evolution of a fluid injected supersonically into
the computational domain through a small nozzle. This simple initial setup allows for the

FIG. 11. The relativistic version of Emery’s flat-faced step for a timet = 4.3. A one-dimensional section
(y = 0.4) of the density for our ENO2 approximation of Fig. 10.
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study of the morphology and dynamics ofrelativistic jetsencountered in some astrophysical
scenarios. A comprehensive study can be found in [22], where Marquina’s solver was used,
together with the piecewise-parabolic reconstruction procedure of Woodward and Colella,
adapted to the relativistic equations by Mart´ı and Müller in [19].

Here we choose one particular model of the large sample in [22] to illustrate the per-
formance of Marquina’s scheme with respect to another linearized solver of Roe’s type
previously employed in relativistic simulations (see [20]).

We use cylindrical coordinates(r, z) to discretize the numerical domain, which is 25
units long in thez-direction and 7 units wide in ther -direction. The domain is covered by
a uniform numerical grid consisting of 500× 140 zones. The beam fluid is injected into
the grid parallel to the symmetry axis (thez axis) through a nozzle at the bottom (r = 0)
of the left boundary of the grid (z= 0), which is 20 zones wide (i.e., of length unity).
Outflow boundary conditions are used at all boundaries, except at the symmetry axis (r = 0
boundary), where reflection conditions are imposed, and at the nozzle, where fixed inflow
beam conditions are used. The initial model that we consider for the injected beam fluid
corresponds to a Mach 6 flow with0 = 5/3. The density outside the beam isρ = 1 and the
velocity of the fluid at the nozzle isvr = 0 andvz = 0.99.

We apply two different codes to this initial setup. Both codes use the same piecewise-
parabolic reconstruction and time-stepping procedures, but one incorporates Marquina’s
recipe in the numerical flux computation while the other one uses the Roe-type linearized
solver used in [20].

Figure 12 shows our numerical approximations obtained at an early stage of the simulation
in each case. Even with this simple initial setup the flow develops an interesting structure.
In both figures one can see the leading bow shock, the internal contact discontinuity which
is Kelvin–Helmholtz unstable, and the beam, the innermost internal channel. At this time
of the evolution the beam presents an internal conical shock and a Mach disk at its head,
which slows down the material inside the beam.

The most significant difference between both plots is the small protuberance ahead of
the bow shock which appears when using the Roe-like solver. This is purely a numerical
artifact, since the Mach disk prevents the material inside the beam from pushing other
material ahead of the bow shock. This local pathological behavior is well known in blunt
body simulations in gas dynamics (see [24] and references therein) and receives the name
of carbuncle. As pointed out by Quirk [24], Roe’s scheme admits sometimes this spurious
solution, being the effect more likely to appear for high Mach number flows and the more
closely the grid is aligned to the bow shock. This is precisely what we have here. As can be
seen in Fig. 12 the pathology seems to disappear when Marquina’s solver is used. The price
to be paid is a 20% increase in the total computational time when Marquina’s flux formula
is used in the code.

6. CONCLUSIONS

Marquina’s flux formula [4], a new numerical flux formula to compute the flux at a
cell interface for hyperbolic systems of conservation laws, is used to describe a new class
of HRSC methods and to study its performance and applicability in the field of special
relativistic hydrodynamics.

An appropriate conservative formulation for the equations of RFD is the starting point
to apply any shock-capturing technique to RFD. In this paper we continue using the
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FIG. 12. Simulation of a supersonic relativistic jet; the logarithm of the rest-mass density—gray-scale—
obtained with a PPM reconstruction procedure. Top: a linearized Roe-like solver (notice the “carbuncle phe-
nomenon” ahead of the bow shock). Bottom: Marquina’s flux formula. The behaviour of the numerical solution
agrees with the physics of the problem.

conservative formulation employed in [12, 19, 20, 15, 22], providing for the first time
an explicit, ready-to-use, formulation of the full spectral decomposition of the Jacobian
matrices associated to the fluxes in each spatial direction. This is an essential ingredient in
the HRSC techniques we propose, since the spectral decomposition is used in the flux com-
putation as well as in the reconstruction step. The spectral decomposition has, moreover,
the potential interest of allowing an extensive range of application of HRSC methods, with
different approaches, i.e, different approximate Riemann solvers.
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We have performed several standard one-dimensional shock tube tests and our numer-
ical results confirm the feasibility of our theoretical procedure, as well as our numerical
algorithm. The explicit spectral decomposition of the Jacobian matrices given in Section 2
allows us to carry out our higher order reconstructions for locally defined characteristic
fields, which seems to be an important ingredient to obtain well behaved profiles in the
presence of strong pressure jumps. In all our numerical tests, the behavior of our second-
and third-order codes is consistent with what is to be expected of a HRSC method.

Our second- and third-order methods provide accurate, oscillation-free numerical ap-
proximations of better quality than those of [26], especially at the corners of rarefaction
waves. This is probably due to the fact that special relativistic effects are included in the
scheme in a fundamental way, not only by an a priori estimate of two signal velocities. Con-
cerning the comparisons with previous results in [19], we can conclude that our relativistic
PHM provides numerical approximations which are similar to their relativistic PPM (also
a third-order method). This would imply that, at least for high order methods, nothing is
gained by using an exact Riemann solver.

To illustrate the behavior of these schemes in two dimensions, we have studied numer-
ically the flow evolution in a wind tunnel containing a flat-faced step. In our relativistic
extension of this classical test in gas dynamics we obtained a well-behaved numerical
approximation. In addition we have computed the evolution of a supersonic (and ultrarela-
tivistic) jet stream, obtaining an approximation which appears to be both physically correct
and numerically well behaved. This last simulation was done using anexistingcode, substi-
tuting the numerical flux computation routine by the one described in this paper. Marquina’s
flux formula can be easily incorporated into an existing conservative code for the solution of
hyperbolic systems of conservation laws (once the spectral decomposition of the Jacobian
matrices of the system is known), thus avoiding the daunting task of programming a new
method from scratch.

APPENDIX: DISCUSSION OF THE CORNER TREATMENT

IN RELATIVISTIC HYDRODYNAMICS

As in the Newtonian case [33, 4], the correction process at the corner of the step is based
on the assumption of a nearly steady flow in a small region around the corner.

We shall perform two successive corrections on certain cells (which we call “b”) above
the step, using the values of the variables at the cell located just to the left and below the
corner (we call this call “a”). The “b” cells are the first four cells of the first row above the
step, starting just to the right of the corner, and the first two cells of the second row above,
also starting from the right.

The corrections in the relativistic case are the natural extension of those in [4] for the
Newtonian case. They are as follows:

• Entropy correction.In each “b” cell, we reset the density in order for the “pseudo-
entropy,” A= P/ργ , in cell “b”, to be the same as in cell “a”:

ρb = ρa

(
Pb

Pa

)1/γ

. (24)

• Enthalpy correction.Using the reset density value, we correct the enthalpy in “b” cells,
by changing the magnitudes of the velocities (not their directions!) as follows:
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FIG. 13. The relativistic version of Emery’s flat-faced step for a timet = 4.3 and an inflow velocityvx
0 = 0.995.

Thirty isocontours of the pseudo-entropy for our third-order PHM reconstruction. The corner correction has been
implemented.

There is always a nonnegative constantα such that

Ha = Hα
b , (25)

whereHa stands for the value ofhW in cell “a,” and

Hα
b ≡ hbWα

b = 1√
1 − αq2

b

(
1 + Bρ

γ−1
b

)
(26)

with q2
b being the sum of the squares of the original components of the velocity in cell “b”

andB beingAγ /(γ − 1). Equation (25) is justBernouilli’s law for relativistic flows [13],
and it always has a nonnegative solution forα, because the value of the density in “b” cells
is never larger than the value in cell “a”:

α = 1

q2
b

1 − (
1 − q2

a

)(1 + Bρ
γ−1
b

1 + Bρ
γ−1
a

)2
 . (27)

Obviously, the Newtonian limit [4] is covered.
We then reset the vectoru in each “b” cell to(

ρbWα
b , ρbhb

(
Wα

b

)2√
α(qb)

j , ρbhb
(
Wα

b

)2 − pb − ρbWα
b

)
. (28)

If these two successive corrections are not applied, the entropy is violated along the
streamlines just above the step.

In Figs. 13 and 14 we display two contour plots of the pseudo-entropy,A, at t = 4.3.
They correspond to numerical approximations obtained with the our PHM-third-order code.
Figure 13 corresponds to the application of the corner treatment and Fig. 14 to the absence
of corner treatment. We have observed that, when no treatment is applied, the value of the
enthalpy above and near the corner is slightly smaller than the value at the left of the corner.
The fluid around the corner is almost steady; however, the entropy is clearly violated. The
sectiony = 0.2 of the pseudo-entropy is shown in Figs. 15 and 16 for both cases. We observe
a strong entropy violation atx = 0.6, the abscissa of the corner, which can be considered
nearly a streamline of the flow. When the corner treatment is applied, there are no sudden
entropy jumps except for the expected entropy production at the bow shock.
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FIG. 14. The relativistic version of Emery’s flat-faced step for a timet = 4.3 and an inflow velocityvx
0 = 0.995.

Thirty isocontours of the pseudo-entropy for our third-order PHM reconstruction. The corner correction has not
been implemented and we observe the buildup of a numerical boundary layer.

FIG. 15. The relativistic version of Emery’s flat-faced step for a timet = 4.3. A one-dimensional section
(y = 0.2) of the pseudo-entropy for our third-order PHM reconstruction of Fig. 13.

FIG. 16. The relativistic version of Emery’s flat-faced step for a timet = 4.3. A one-dimensional section
(y = 0.2) of the pseudo-entropy for our third-order PHM reconstruction of Fig. 14.



        

ALGORITHM FOR RELATIVISTIC FLOWS 81

ACKNOWLEDGMENTS

The authors thank J. Ma Martı́ for many useful discussions as well as a large amount of good advice. His
permission to use his codes in our astrophysical simulation is gratefully acknowledged. This work has been
supported by the Spanish DGICYT (Grants PB94-0973 and PB94-0987); the fourth author has also been partially
supported by an ARPA URI Grant ONR-N00014-92-J-1890. Calculations were carried out in HP workstations
(Apollo 9000, series 700). The authors acknowledge a grant from the Instituci`o Valenciana d’Estudis i Investigaci`o.

REFERENCES

1. A. M. Anile, Relativistic Fluids and Magneto-Fluids(Cambridge Univ. Press, Cambridge, 1989).

2. D. Balsara,J. Comput. Phys. 114, 284 (1994).

3. F. Banyuls, J. A. Font, J. M. Iba˜nez, J. M. Mart´ı, and J. A. Miralles,Astrophys. J.476, 221 (1997).

4. R. Donat and A. Marquina,J. Comput. Phys. 125, 42 (1996).

5. G. C. Duncan and P. A. Hughes,Astrophys. J.436, L119 (1994).

6. A. Dolezal and S. S. M. Wong,J. Comput. Phys.120, 266 (1995).

7. A. F. Emery,J. Comput. Phys.2, 306 (1968).

8. F. Eulderink, Ph.D. thesis, University of Leiden, 1993.

9. F. Eulderink and G. Mellema,Astron. Astrophys.284, 652 (1994).

10. R. Fedkiw, B. Merryman, R. Donat, and S. Osher, UCLA CAM Report96-18, 1996.

11. J. A. Font, Ph.D. thesis, University of Valencia, 1994.
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17. J. Ma. Martı́, J. Ma. Ibáñez, and J. A. Miralles,Phys. Rev. D43, 3794 (1991).

18. J. Ma. Martı́ and E. Müller, J. Fluid Mech.258, 317 (1994).

19. J. Ma. Martı́ and E. Müller, J. Comput. Phys. 123, 1 (1996).

20. J. Ma. Martı́, E. Müller, and J. Ma. Ibáñez,Astron. Astrophys.281, L9 (1994).
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